My JSP 'top.shtml' starting page

相关研究

 

    为了研究中微子的性质,各国建造了大量探测设施,比较著名的有日本神冈町的地下中微子探测装置、意大利的“宏观”、俄罗斯在贝加尔湖建造的水下中微子探测设施以及美国在南极地区建造的中微子观测装置。

   1994年,美国威斯康星大学和加利福尼亚大学的科学家在南极冰原以下800米深处安装辐射探测器,以观测来自宇宙射线中的中微子。使用南极冰原作为探测器的安置场所,是因为冰不产生自然辐射,不会对探测效果产生影响。此外,把探测器埋到深处,是为了过滤掉宇宙中除了中微子之外的其他辐射。

   宇宙中微子的产生有几种方式。一种是原生的,在宇宙大爆炸产生,现在为温度很低的宇宙背景中微子。第二种是超新星爆发巨型天体活动中,在引力坍缩过程中,由质子和电子合并成中子过程中产生出来的,SN1987A中微子就是这一类。第三种是在太阳这一类恒星上,通过轻核反应产生的十几MeV以下的中微子,目前还无法搞清楚的太阳中微子就是其中之一。第四种是高能宇宙线粒子射到大气层,与其中的原子核发生核反应,产生π、K介子,这些介子再衰变成中微子,这种中微子叫“大气层中微子”。五是宇宙线高能持子与宇宙微波背景辐射的光子碰撞产生π介子,这个过程叫“光致π”, π介子衰变产生高能中微子,这种中微子能量极高。第六种是宇宙线高能质子打在星体云或星际介质的原子核上产生核反应生成的介子衰变为中微子,特别在一些中子星、脉冲星等星体上可以产生这种中微子。第七种是地球上的物质自发或诱发裂变产物β衰变产生的中微子,这类中微子是很少的。

   泡利提出中微子假说时,还不知道中微子有没有质量,只知道即使有质量也是很小的,因为电子的最大能量与衰变时放出的总能量很接近,此时中微子带走的能量就是它的静止能量,只能是很小的。

   1998年6月12日,东京大学的一个国际研究小组在美国《科学》杂志上发表报告说,他们利用一个巨大的地下水槽,证实了中微子有静止质量。这一论断在世界科学界引起广泛关注。由日、美、韩三国科学家组成的科研小组日前在此间宣布,他们在实验中观测到了250公里远处的质子加速器发出的中微子。这是人类首次在如此远的距离内观测到人造粒子。

   日本文部省的高能加速器机构位于筑波科学城,东京大学宇宙射线研究所设在岐阜县的神冈,两地相距250公里。6月19日下午,科学家在高能加速器研究机构使用质子加速器向宇宙射线研究所的神冈地下检测槽发射中微子,并通过检测槽检测到了中微子。由于这批中微子来自筑波科学城方向,并且是在发射之后大约0.00083秒时检测到的,科学家因而断定,它们就是质子加速器发出的那批中微子。

   这项实验是为了证实中微子有静止质量而设计的。1998年6月,日、美两国科学家宣布探测到中微子有静止质量。如果这一点被证实,现有的理论物理体系将受到巨大冲击。为了验证这一发现,科学家计划人工发射和接收中微子,观察中微子经过远距离传输后发生的变化,推断中微子是否有质量。

   超级神冈探测器主要用来研究太阳中微子。太阳是地球上所有生命的源泉,也是地球表面最主要的能量来源。事实上,到达地球太阳光热辐射总功率大约是170万亿千瓦,只占太阳总辐射量的22亿分之一。爱因斯坦相对论的质能关系式使人们了解了核能,而太阳正是靠着核反应才可以长期辐射出巨大能量,这就是太阳能源的来源。在太阳上质子聚变和其他一些轻核反应的过程中不仅释放出能量,而且发射出中微子。人们利用电子学方法或者放射化学的方法探测中微子。1968年,戴维斯发现探测到的太阳中微子比标准太阳模型的计算值少得多。科学还无法解释太阳中微子的失踪之谜,也许是因为中微子还有许多我们不了解的性质。

 

日本在神冈町建立的地下中微子探测装置

 

   这个探测装置由来自日本和美国的约120名研究人员共同维护。他们在神冈町地下一公里深处废弃的锌矿坑中设置了一个巨大水池,装有5万吨水,周围放置了1.3万个光电倍增管探测器。当中微子通过这个水槽时,由于水中氢原子核的数目极其巨大,两者发生撞击的几率相当高。碰撞发生时产生的光子被周围的光电倍增管捕获、放大,并通过转换器变成数字信号送入计算机,供科学家们分析。

   科学家们已经确认中微子有三种形态:电子中微子、μ(缪子)中微子和τ(陶子)中微子;其中只有前两者能够被观测到。日本科学家设计的这个装置主要是用来探测宇宙射线与地面上空20公里处的大气层中各种粒子发生碰撞产生的缪子中微子。研究人员在6月12日出版的美国《科学》杂志上报告说,他们在535天的观测中捕获了256个从大气层进入水槽的缪子中微子,只有理论值的百分之六十;在实验地背面的大气层中产生、穿过地球来到观测装置的中微子有139个,只剩下理论值的一半。他们据此推断,中微子在通过大气和穿过地球时,一部分发生了振荡现象,即从一种形态转为另一种,变为检测不到的陶子中微子。根据量子物理的法则,粒子之间的相互转化只有在其具有静止质量的情况下才有可能发生。其结论不言而喻:中微子具有静止质量。研究人员指出,这个实验结果在统计上的置信度达到百分之九十九点九九以上。

   这个实验不能给出中微子的准确质量,只能给出这两种中微子质量之差--大约是电子质量的一千万分之一,这也是中微子质量的下限。中微子具有质量的意义却不可忽视。一是如前所述,由于宇宙中中微子的数量极其巨大,其总质量也就非常惊人。二是在现有的量子物理构架中,科学家用假设没有质量的中微子来解释粒子的电弱作用;因此如果它有质量,目前在理论物理中最前沿的大统一理论模型(一种试图把粒子间四种基本作用中的三种统一起来的理论)就需要重建。

   不过日本科学家不是最早提出中微子具有静止质量的人。早在1980年,苏联理论与实验物理研究所柳比莫夫小组在经过10年的氚?能谱测量以后得出结论,认为中微子的质量为34.4电子伏特。(电子伏特是一个很小的能量单位,相当于一个电子在一伏特的电场中具有的能量。)考虑到仪器因素带来的测量误差和实验方法不完善带来的系统误差之后,中微子的质量应在17至40电子伏特之间。这一结果第一次宣布电子反中微子的质量不等于零,轰动了全世界子物理学界和天体物理学界。

   他们的研究成果公布后,全世界十几个实验室纷纷采用类似的方法检验柳比莫夫小组结果的正确性。1986年,瑞士苏黎士大学物理所、日本东京大学原子核研究所、美国洛斯阿拉莫斯国家实验室等先后发表了自己的实验结果,与苏联同行的结论相去不远。中国原子能科学研究院从80年代初开始也进行了此项研究,积累了三万多个实验数据,得出结论电子反中微子的静止质量在30电子伏特以下。

   对中微子的研究不仅可以告诉我们宇宙整体的质量,而且可以揭示浩瀚的太空深处各种星体的奥秘。这是因为从星球内部发出的光很难穿过庞大的星球,我们现在所观测到的星光、太阳光只是星球、太阳表面发出的光,只有中微子才能畅通无阻地将星球、太阳内部的信息带给我们。因此,揭开关于中微子的各个谜,既是深入认识微观世界的需要,也是深入认识宏观世界的需要。

   1987年2月23日格林尼治时间10点35分,南半球的几个天文台观测到大麦哲伦星云中一颗编号为SN1987A的超新星开始爆发。这消息公布后,几个有大型地下探测装置的实验室立刻查阅了数据记录磁带,发现在当天格林尼治时间7点35分左右总共捕获了24个来自超新星的中微子,记录下了十分珍贵的信息。中微子比光先到达地球是因为在星球内核引力坍缩的最初阶段温度激增至10^11摄氏度,在高温下质子与电子合成中子而放出大量中微子。该反应产生强大的激波向外扩散,将星球外层物质加热到几十万度而导致爆发,发出大量的光辐射。这三个小时的时差就是激波从核心传到星球表面的时间。

 

 

超新星1987a爆发前后的图片

 

 

   这次观测到超新星的爆发以后,天文学的一个新领域--中微子天文学诞生了。由于宇宙中存在大量的星际尘埃,对可见光电磁波有较强的遮蔽作用,使我们无法探测遥远宇宙的奥秘。而中微子可以穿过大量的物质却几乎不发生任何反应,从而为我们带来了宇宙深处的中微子信息。比如虽然SN1987A爆发时我们只记录下了24个中微子,但却可以推算出这颗超新星爆发的总能量和爆发后形成的中子星的直径与质量。

 

 

资料来源:中国新闻网、中国科学院院网、百度名片、腾讯科技、新浪科技

 

My JSP 'down.shtml' starting page